当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

3524:Perfect Squares

题目描述
A number x is called a perfect square if there exists an integer b
satisfying x=b^2. There are many beautiful theorems about perfect squares in mathematics. Among which, Pythagoras Theorem is the most famous. It says that if the length of three sides of a right triangle is a, b and c respectively(a < b <c), then a^2 + b^2=c^2.
In this problem, we also propose an interesting question about perfect squares. For a given n, we want you to calculate the number of different perfect squares mod 2^n. We call such number f(n) for brevity. For example, when n=2, the sequence of {i^2 mod 2^n} is 0, 1, 0, 1, 0……, so f(2)=2. Since f(n) may be quite large, you only need to output f(n) mod 10007.
输入解释
The first line contains a number T<=200, which indicates the number of test case.
Then it follows T lines, each line is a positive number n(0<n<2*10^9).
输出解释
For each test case, output one line containing "Case #x: y", where x is the case number (starting from 1) and y is f(x).
输入样例
2
1
2
输出样例
Case #1: 2
Case #2: 2
来自杭电HDUOJ的附加信息
Recommend zhengfeng

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-3524

最后修改于 2020-10-25T23:04:26+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
2000/1000MS(Java/Others) 65536/32768K(Java/Others)