A polygon is lowered at a constant speed of
v metres per minute from the air into a liquid that dissolves it at a constant speed of
c metres per minute from all sides. Given a point (
x,
y) inside the polygon that moves with the polygon, determine when the liquid reaches the point.
The border between air and liquid always has y-coordinate 0, and the liquid only eats away from the sides of the polygon in 2 dimensions. The polygon does not rotate as it is lowered into the liquid, and at time 0, it is not touching the liquid.
Unlike the polygon, which is flat (2-dimensional), the liquid exists in three dimensions. Therefore, the liquid seeps into cavities in the polygon. For example, if the polygon is "cup-shaped", the liquid can get "inside" the cup, as in the diagram below.