当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

3093:Parliament Seat

题目描述
It is election time. V voters attend the election, each casting their vote for one of N political parties. Mofficials will be elected into the parliament.
The conversion from votes to parliament seats is done using the D'Hondt method with a 5% threshold.More precisely, suppose that the parties are numbered 1 through N and that they receive V1, V2, ..., VN votes. Parliament seats are allocated as follows:
1. All parties that receive strictly less than 5% of V votes are erased from the list of parties.
2. The parliament is initially empty i.e. every party has zero seats allocated.
3. For each party P, the quotient QP=VP/(SP+1) is calculated, where VP is the total number of votes received by party P, and SP is the number of seats already allocated to party P.
4. The party with the largest quotient QP is allocated one seat. If multiple parties have the same largest quotient, the lower numbered party wins the seat.
5. Repeat steps 3 and 4 until the parliament is full.
The votes are being counted and only part of the V votes has been tallied. It is known how many votes each party has received so far.Write a program that calculates for each party, among all possible outcomes of the election after all V votes are counted, the largest and smallest number of seats the party wins.
输入解释
The first line contains the integers V, N and M (1 ≤ V ≤ 10,000,000, 1 ≤ N ≤ 100, 1 ≤ M ≤ 200), the numbers of votes, parties and seats in the parliament.
The second line contains N integers – how many votes (of those that have been counted) each party got. The sum of these numbers will be at most V.
输出解释
On the first line output N integers separated by spaces – the largest number of seats each party can win.
On the second line output N integers separated by spaces – the smallest number of seats each party can win.
输入样例
20 4 5
4 3 6 1
100 3 5
30 20 10
输出样例
3 3 3 2
1 0 1 0	
4 3 3
1 1 0


提示
 
In the first example 14 votes have been tallied and 6 are yet to be counted. To illustrate one possible outcome, suppose that the first party receives 2 of those 6 votes, 
the second none, the third 1 vote and the fourth 3 votes. The parties' totals are 6, 3, 7 and 4 votes. All parties exceeded the 5% threshold.
Seats are allocated as follows:
1. The quotients are initially 6/1, 3/1, 7/1 and 4/1; the largest is 7/1 so party 3 wins a seat.
2. The quotients are 6/1, 3/1, 7/2 and 4/1; the largest is 6/1 so party 1 wins a seat.
3. The quotients are 6/2, 3/1, 7/2 and 4/1; the largest is 4/1 so party 4 wins a seat.
4. The quotients are 6/2, 3/1, 7/2 and 4/2; the largest is 7/2 so party 3 wins a seat.
5. The quotients are 6/2, 3/1, 7/3 and 4/2; parties 1 and 2 are tied with quotients 6/2 and 3/1,but party 1 is lower numbered so it wins the last seat.

In this outcome, the numbers of seats won by the parties are 2, 0, 2 and 1. Since it is possible for the second party not to win any seats, the second number
 on the second line of output is zero.
来自杭电HDUOJ的附加信息
Recommend lcy

该题目是Virtual Judge题目,来自 杭电HDUOJ

源链接: HDU-3093

最后修改于 2020-10-25T22:59:57+00:00 由爬虫自动更新

共提交 0

通过率 --%
时间上限 内存上限
6000/3000MS(Java/Others) 32768/32768K(Java/Others)