A 3-dimensional shape is said to be convex if the line segment joining any two points in the shape is entirely contained within the shape. Given a general set of points X in 3-dimensional space, the convex hull of X is the smallest convex shape containing all the points.
For example, consider X = {(0, 0, 0), (10, 0, 0), (0, 10, 0), (0, 0, 10)}. The convex hull of X is the tetrahedron with vertices given by X.
Given X, your task is to find the girth of the convex hull of X, rounded to the nearest integer.
You may assume there will be at most 3 points in X on any face of the convex hull.