Reverse Polish notation (RPN) is a method for representing expressions in which the operator symbol is placed after the arguments being operated on.
Polish notation, in which the operator comes before the operands, was invented in the 1920s by the Polish mathematician Jan Lucasiewicz.
In the late 1950s, Australian philosopher and computer scientist Charles L. Hamblin suggested placing the operator after the operands and hence created reverse polish notation.
RPN has the property that brackets are not required to represent the order of evaluation or grouping of the terms.
RPN expressions are simply evaluated from left to right and this greatly simplifies the computation of the expression within computer programs.
As an example, the arithmetic expression (3+4)*5 can be expressed in RPN as 3 4 + 5 *.
Reverse Polish notation, also known as postfix notation, contrasts with the infix notation of standard arithmetic expressions in which the operator symbol appears between the operands. So Polish notation just as prefix notation.
Now, give you a string of standard arithmetic expressions, please tell me the Polish notation and the value of expressions.