Problems that process input and generate a simple ``yes'' or ``no'' answer are called decision problems. One class of decision problems, the NP-complete problems, are not amenable to general efficient solutions. Other problems may be simple as decision problems, but enumerating all possible ``yes'' answers may be very difficult (or at least time-consuming).
This problem involves determining the number of routes available to an emergency vehicle operating in a city of one-way streets.
Given the intersections connected by one-way streets in a city, you are to write a program that determines the number of different routes between each intersection. A route is a sequence of one-way streets connecting two intersections.
Intersections are identified by non-negative integers. A one-way street is specified by a pair of intersections. For example, j k indicates that there is a one-way street from intersection j to intersection k. Note that two-way streets can be modeled by specifying two one-way streets: j k and k j .
Consider a city of four intersections connected by the following one-way streets:
0 1
0 2
1 2
2 3
There is one route from intersection 0 to 1, two routes from 0 to 2 (the routes are 0-1-2 and 0-2 ), two routes from 0 to 3, one route from 1 to 2, one route from 1 to 3, one route from 2 to 3, and no other routes.
It is possible for an infinite number of different routes to exist. For example if the intersections above are augmented by the street , there is still only one route from 0 to 1, but there are infinitely many different routes from 0 to 2. This is because the street from 2 to 3 and back to 2 can be repeated yielding a different sequence of streets and hence a different route. Thus the route 0-2-3-2-3-2 is a different route than 0-2-3-2 .