Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level.
This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of
for n > 2.
Given a positive integer N, you are to write a program that computes two quantities regarding the solution of
where x, y, and z are constrained to be positive integers less than or equal to N. You are to compute the number of triples (x,y,z) such that x<y< z, and they are relatively prime, i.e., have no common divisor larger than 1. You are also to compute the number of values 0<p≤n such that p is not part of any triple (not just relatively prime triples).