当前你的浏览器版本过低,网站已在兼容模式下运行,兼容模式仅提供最小功能支持,网站样式可能显示不正常。
请尽快升级浏览器以体验网站在线编辑、在线运行等功能。

建议使用的浏览器:

谷歌Chrome 火狐Firefox Opera浏览器 微软Edge浏览器 QQ浏览器 360浏览器 傲游浏览器

1081:To The Max

题目描述
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.
输入解释
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
输出解释
Output the sum of the maximal sub-rectangle.
输入样例
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
输出样例
15
来自杭电HDUOJ的附加信息
Recommend

该题目是Virtual Judge题目,来自 杭电HDUOJ

题目来源 Greater New York 2001

源链接: HDU-1081

最后修改于 2020-10-25T22:42:00+00:00 由爬虫自动更新

共提交 409

通过率 67.48%
时间上限 内存上限
2000/1000MS(Java/Others) 65536/32768K(Java/Others)